末成年小嫩xb,嫰bbb槡bbbb槡bbbb,免费无人区码卡密,成全高清mv电影免费观看

Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

數據處理、材料篩選與性質預測……

Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

從科學應用的角度,無論材料、化學、生物、物理、醫學、工程等領域,但凡涉及到理論,或者在實驗上涉及到數據和模型,就有機器學習的用武之地。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
時至今日,機器學習在材料、化學、生物、醫學等科學技術領域的成就令人矚目,幾乎無人再質疑機器學習對科學領域做出貢獻的可能性。好玩的是,當下炙手可熱的科技概念——元宇宙,其本質也存在機器學習的影子。在世界各大經濟體明確推動AI發展的大趨勢下,機器學習應用于科學技術發展的熱度將會一直持續下去。
機器學習的使用強烈依賴于代碼編寫,這常常是化學專業同學們的短板。現有機器學習課程多為計算機方向,無法快速落地到生化環材等學科研究。為了幫助科研人員快速切入新風口,華算科技開設了“機器學習與材料/化學”課程,課程提供無限次回放,建立永不解散的課程群,及時答疑。
課程面向Python零基礎,對機器學習感興趣,想在自己的研究方向使用機器學習的化學、材料學相關工作者。通過本次課程,大家可以學會當下最流行的Python語言,學會抓取數據庫,能使用機器學習基本算法,并會用于機器學習解決化學與材料學的實驗數據處理、材料篩選與性質預測等問題,能夠重現機器學習的文獻案例。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
許多化合物可以通過實驗、理論計算或者機器學習方法進行研究
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
四個科學范式:經驗,理論,計算和數據驅動
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
被稱為“五V”的大數據特征
著名材料科學數據庫Materials Project于2022年5月底進行了較大的更新改動,新舊版數據庫使用差別較大,本次課程將介紹新版數據庫的主要使用與數據抓取辦法,確保參與的老師和同學掌握前沿的技術手段。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
新版Materials Project界面圖
12月26日開課,僅限前20人報名優惠立減500元,速搶!
????掃描二維碼,立即報名?????
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
????電話:18126387652?????
往期課程學員評價:
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
(點擊圖片可查看大圖)

課程亮點

課程針對零編程基礎的化學、材料學工作者設計,先扎實學習當下最流行、與機器學習契合度最高的Python語言,再學習機器學習的基本算法,并對文獻案例進行重現。課程包含大量實際操作內容,掌握編程神器Python與黑科技機器學習不再遙不可及。

講師介紹

黃博士華算科技全職技術專家,武漢大學本科,北京大學博士,新加坡國立大學訪問學者。目前已發表SCI文章共20篇,其中第一作者文章5篇,單篇最高影響因子>40。
從事理論計算與實驗化學研究工作十年,擅長使用機器學習進行化學理論的研究及實驗數據的處理,曾獲華中地區數學建模邀請賽三等獎,北京大學游戲AI對抗全國邀請賽第四名等相關獎項。

課表一覽

Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

課程安排

Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

課程內容

課前免費提供相關Python軟件的安裝錄像,課前完成軟件安裝,課上直接使用整個課程分為8個主要部分,每個部分內容如下:

1

開始Python學習之旅!?

介紹Python的功能與用途,Python近年的發展趨勢、流行的原因以及其在科學數據處理、可視化方面的應用。了解Anaconda,學習Jupyter編譯環境的基本使用,編寫屬于自己的第一個Python程序,學會查看Python錯誤,并根據錯誤提示修正代碼。學會查看幫助文件。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

2

學習Python的基本使用!?

了解Python的基本變量、運算符、語法,學會使用Python的條件判斷語句、循環語句。完成計算Fibonacci數列程序的編寫。了解Python中函數的概念,會編寫Python函數,并用于對可逆氫電極電勢案例。學會使用Python讀寫文件。完成此部分的學習后,我們已經可以使用Python編寫簡單的程序了!
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

3

強大的Python庫!?

Python的強大源于它的第三方庫,此部分將開始Python庫的學習!在此部分,將學會Python庫的安裝、導入與使用方法。對于眾多的Python庫,我們著重學習NumPy庫、pandas庫與matplotlib庫,掌握它們的數據類型與使用方法。
結合Python庫以及文件讀寫,我們已經可以編寫較為復雜的Python程序,用于進行實驗數據或計算文件的后處理了。我們這里將以譜數據平滑為案例,介紹數據處理的流程與實現方式。科學研究上常常將NumPy,SciPy,matplotlib等Python庫結合使用,用于替代matlab、origin等商業軟件進行數據處理與展示!

Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

4

邁向機器學習!?

掌握了神器Python,我們將開始我們的機器學習之旅。此部分的學習后我們對機器學習的使用有概括性的認識,了解到機器學習在化學中的主要應用領域,并將知曉機器學習在化學、材料科學研究中的優勢。在這部分中,我們還會學習使用Python對數據進行可視化,這將對我們數據處理與機器學習的結果處理有很大的幫助。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

5

機器學習算法!?

此部分將學習機器學習的主要算法。對于回歸算法與分類算法,將會對原理進行細致的講解,并使用多個相關的案例對不同算法進行演示與實際操作:雙金屬d帶中心與吸附能(單變量線性回歸)、預測HER活性(多變量線性回歸)、連續反應動力學(非線性回歸)、有機小分子分類(決策樹分類、支持向量機分類)。
在模型未知時,模型的評價顯得極為重要,課程中將對留出法、交叉驗證法等模型評價方法進行講解與實際操作,并使用預測HER活性案例進行學習,讓大家今后能在研究中會做出正確的模型選擇。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

6

萬里挑一,機器學習與高通量篩選

高通量篩選是目前在化學中與材料科學中常用的數據利用方法,數據庫也逐漸成為機器學習與材料信息學中大量數據的來源,本部分將介紹新版Materials Project的功能與使用,并介紹一些常用的材料科學數據庫。
課程還將使用Python中專為材料科學打造的數據挖掘庫——matminer。通過matminer,可以輕松的獲取大量的催化材料、電極材料數據并進行清洗。我們將節選電極表面涂層材料的高通量篩選作為案例,進行高通量篩選的實際操作練習,部分重復文獻中的高通量篩選內容。我們還將學習如何將機器學習與高通量篩選進行結合,使科研更為高效。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

7

機器學習經典案例!?

經過前面的學習,機器學習在我們面前已不再神秘,我們已經掌握了機器學習的基本算法,并且對部分案例進行了學習。這時,我們可以選擇更多相關的案例,做更為全面的解讀與重現,檢驗我們的學習成果!
我們選擇了預測d帶中心、預測體積模量作為核心案例,通過實際操作,復原整個預測過程。兩個案例輸入的預處理不同,使用的機器學習模型不同,這使得我們一方面鞏固了我們Python與機器學習使用的基礎,另一方面使得我們更透徹的了解如何將機器學習應用到實際研究之中。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

8

機器學習的最前沿!?

到這個階段我們已經完成了機器學習的入門了,我們知道如何將機器學習應用到本學科的研究當中。但不可否認的是,機器學習仍有很多可學習的地方,很多經典的案例因為種種原因,例如復現所需時間過長,數據集過大或尚未公開,使用較復雜模型(如:神經網絡模型,該模型實操部分將于進階課中進行)等等,并不能大家一起在課堂上完成。
對于這些案例,我們也將精選重要的部分(如當下熱門的機器學習原子勢,實時從頭算分子動力學)進行學習與講解,并介紹一些機器學習常用軟件。使我們知曉機器學習在化學上最前沿的應用。完成了系統的學習,機器學習對我們不再神秘,并將成為我們自己的科研黑科技武器。
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等

報名方式

主辦單位:深圳華算科技有限公司(擁有VASP、Materials Studio、Gaussian、LAMMPS商業版權
培訓形式:線上直播,課程群永不解散,隨時提問,及時解答。
上課時間:12月26日-12月30日。
課程費用:3980元,提供增值稅普通發票及邀請函。請提前報名,我們會根據學員課前反饋,適當增加課程內容。老客戶有優惠,請聯系華算科技-妮妮咨詢。
報名方式:識別下方二維碼報名,或者聯系手機18126387652
????掃描二維碼,立即報名?????
Python機器學習在材料領域應用培訓:催化/電池/動力學/有機/力學等,最新MP數據庫/材料篩選/性質預測/數據處理等
????電話:18126387652????

付款方式

1.銀行轉賬匯款
收款單位:深圳華算科技有限公司
銀行賬號:758869652456
開戶行:中國銀行深圳西麗支行?
注意:付款時請備注“姓名+單位+機器學習”
2.支付寶轉賬
企業支付寶賬戶:hskj@v-suan.com
請核對戶名:深圳華算科技有限公司
注意:付款時請備注“姓名+單位+機器學習”
3.刷卡/掃碼支付
可通過公司微信收款碼刷公務卡,請掃碼填寫報名信息以便我們提前為您準備發票等報銷手續。
劃重點:請先添加課程客服微信報名再繳費!

原創文章,作者:華算科技-妮妮(培訓+計算),如若轉載,請注明來源華算科技,注明出處:http://www.zzhhcy.com/index.php/2022/12/06/3bd8a13e93/

(0)

相關推薦

主站蜘蛛池模板: 正定县| 仪征市| 二连浩特市| 永川市| 洪江市| 高清| 错那县| 苍溪县| 久治县| 西乌珠穆沁旗| 衡水市| 姜堰市| 凤翔县| 内黄县| 武川县| 崇信县| 宁明县| 鄂尔多斯市| 林州市| 丰县| 财经| 辰溪县| 康保县| 雷山县| 云霄县| 湛江市| 黑山县| 四会市| 元氏县| 平山县| 南开区| 宣化县| 吴川市| 宁阳县| 都匀市| 迁安市| 土默特左旗| 太白县| 阳原县| 邢台市| 北票市|