末成年小嫩xb,嫰bbb槡bbbb槡bbbb,免费无人区码卡密,成全高清mv电影免费观看

固態電池的關聯電導率:非平衡分子動力學

理解固體電解質中的離子輸運現象對于提高全固態電池、固體氧化物燃料電池、傳感器等各種固體器件的性能至關重要。特別是鋰離子全固態電池,由于其安全性問題,作為下一代電池已經引起了人們的廣泛關注。
固態電池的關聯電導率:非平衡分子動力學
Fig. 1 Schematic representation of ionic conductivity calculations in conventional MD and CCD-NEMD. a Conventional MD: equilibrium?MD (left) and color-diffusion NEMD (right) and b CCD-NEMD: the color charge is defined on the basis of the charge valency of the chemical?units. For example, the color charges ci of Li+ and the Xx–-unit are denoted as +1 and –X, respectively. The conductivity considering the?ion–ion distinct correlation effect can be calculated faster using CCD-NEMD than EMD.
尋找具有高離子電導率的固體電解質對于其性能的進一步提升尤為關鍵,而原子模擬能夠準確、快速地估計離子電導率,有助于材料設計。目前,從頭算分子動力學(AIMD)由于不需要擬合參數,是計算電導率最有效的工具。
固態電池的關聯電導率:非平衡分子動力學
Fig. 2 Crystal structure and transport property of Li10GeP2S12
然而,計算相關離子電導率的高成本迫使幾乎所有的從頭算分子動力學都依賴于能斯特-愛因斯坦(N-E)稀解近似,這忽略了互相關效應。基于顏色擴散算法的非平衡分子動力學(CD-NEMD)可以加速N-E近似電導率的計算,但在避免依賴于N-E近似方面還有改進的空間。
固態電池的關聯電導率:非平衡分子動力學
Fig. 3 Validation and efficiency of CCD-NEMD.
來自日本東京工業大學材料與化學工程學院的Ryoma Sasaki等人,將原有的CD-NEMD加以擴展,開發了一種化學顏色擴散非平衡分子動力學(CCD-NEMD)方法,能夠以比傳統MD更少的采樣步驟計算相關電導率。
固態電池的關聯電導率:非平衡分子動力學
Fig. 4 Temperature dependence and anisotropy of ionic conductivity.
CCD-NEMD可以很好地模擬典型固體電解質Li10GeP2S12和Li7La3Zr2O12的電導率。作者發現,CCD-NEMD的計算成本低、統計精度高并且比使用能斯特-愛因斯坦稀解近似的平衡分子動力學計算效率更高。作者也將CCD-NEMD應用于Li7La3Zr2O12的晶界,證明了該方法適用于界面局域電導率的計算。
固態電池的關聯電導率:非平衡分子動力學
Fig. 5 Haven ratio HR = σdilute/σNEMD of LGPS along c-axis and in?ab-plane as a function of temperature, respectively.
他們進一步發現,CCD-NEMD方法可以通過局部通量來估計界面離子的導電性,這對于增強復合材料的電導率和晶界電阻至關重要。本工作提出的CCD-NEMD有助于進一步準確理解離子相關效應,并促進固體器件的發展該文近期發布于npj Computational Materials 9: 48 (2023).
固態電池的關聯電導率:非平衡分子動力學
Fig. 6 Structures and grain-boundary ionic conductivity of the?Σ3(112) grain boundary of LLZO.
Editorial Summary
Correlated conductivity solid-state batteries: Nonequilibrium molecular dynamics
Understanding ionic transport phenomena in solid electrolytes is fundamentally important for improving the performance of various solid devices, for example, all-solid-state batteries, solid oxide fuel cells, and sensors. In particular, Li-ion all-solid-state batteries have attracted considerable attention as next-generation batteries owing to their safety concerns. Finding solid electrolytes with a high ionic conductivity is crucial for further improvement, and atomistic simulations are required to enable accurate and fast estimation of ionic conductivities for the material design. Currently, ab initio molecular dynamics (AIMD) is the most effective tool for calculating the conductivity as they are free from fitting parameters. However, the high cost of computing correlated ionic conductivities has forced almost all ab initio molecular dynamics to rely on the Nernst–Einstein (N–E) dilute-solution approximation, which ignores the cross-correlation effect. The color-diffusion algorithm-based nonequilibrium molecular dynamics (CD-NEMD) has been applied to accelerate the calculations of N–E approximated conductivity. However, there is room for improvement to avoid the reliance on N–E approximation. In this work, Ryoma Sasaki et al from the School of Materials and Chemical Technology, Tokyo Institute of Technology, extended the CD-NEMD and developed a chemical color-diffusion nonequilibrium molecular dynamics (CCD-NEMD) method, which enables to calculate the correlated conductivities with fewer sampling steps than the conventional MD. CCD-NEMD was demonstrated to well evaluate the conductivities in the representative solid electrolyte bulk Li10GeP2S12?and Li7La3Zr2O12. The results showed that CCD-NEMD leads to low computational cost with high statistical accuracy and is more efficient than the equilibrium molecular dynamics using N–E approximation. The authors also applied CCD-NEMD to the grain boundary of Li7La3Zr2O12and demonstrated its applicability for calculating interfacial local conductivities. This indicates that it can also be employed to estimate interfacial ionic conduction using the local flux, which is essential for enhanced conductivity in composites and grain-boundary resistance. CCD-NEMD can provide further accurate understanding of ionics with ionic correlations and promote developing solid devices.?This article was recently published in npj Computational Materials 9: 48 (2023).
原文Abstract及其翻譯
Nonequilibrium molecular dynamics for accelerated computation of ion–ion correlated conductivity beyond Nernst–Einstein limitation?(超越能斯特-愛因斯坦限制的非平衡分子動力學加速計算離子-離子關聯電導率)
Ryoma Sasaki, Bo Gao,Taro Hitosugi & Yoshitaka Tateyama
Abstract Condensed matters with high ionic conductivities are crucial in various solid devices such as solid-state batteries. The conduction is characterized by the cooperative ionic motion associated with the high carrier density. However, the high cost of computing correlated ionic conductivities has forced almost all ab initio molecular dynamics (MD) to rely on the Nernst–Einstein dilute-solution approximation, which ignores the cross-correlation effect. Here we develop a chemical color-diffusion nonequilibrium MD (CCD-NEMD) method, which enables to calculate the correlated conductivities with fewer sampling steps than the conventional MD. This CCD-NEMD is demonstrated to well evaluate the conductivities in the representative solid electrolyte bulk Li10GeP2S12 and Li7La3Zr2O12. We also applied CCD-NEMD to the grain boundary of Li7La3Zr2O12and demonstrated its applicability for calculating interfacial local conductivities, which is essential for investigating grain boundaries and composite electrolytes. CCD-NEMD can provide further accurate understanding of ionics with ionic correlations and promote developing solid devices.
摘要具有高離子電導率的凝聚態物質在固態電池等各種固體器件中至關重要。導電性可通過與高載流子密度相關的協同離子運動表征。然而,計算相關離子電導率的高成本迫使幾乎所有的從頭算分子動力學(MD)都依賴于能斯特-愛因斯坦稀解近似,這忽略了互相關聯效應。這里,我們開發了一套化學顏色擴散非平衡MD(CCD-NEMD)方法,該方法能夠以比傳統MD更少的采樣步驟計算關聯電導率。CCD-NEMD可以很好地評估典型固體電解質Li10GeP2S12和Li7La3Zr2O12的電導率。我們也將CCD-NEMD應用于Li7La3Zr2O12的晶界,證明了該方法適用于界面局域電導率的計算,這對研究晶界和復合電解質至關重要。CCD-NEMD有助于進一步準確理解離子相關效應,并促進固體器件的發展

原創文章,作者:計算搬磚工程師,如若轉載,請注明來源華算科技,注明出處:http://www.zzhhcy.com/index.php/2023/12/01/2c02b17008/

(0)

相關推薦

主站蜘蛛池模板: 湖南省| 阜康市| 东海县| 屯昌县| 常德市| 项城市| 顺平县| 兴义市| 阳泉市| 安多县| 兴仁县| 阆中市| 寿阳县| 大化| 明光市| 峡江县| 黄冈市| 关岭| 博兴县| 南川市| 唐海县| 东莞市| 贡山| 太谷县| 拉萨市| 苗栗市| 叶城县| 四平市| 得荣县| 隆尧县| 开封市| 慈溪市| 鹿邑县| 仁寿县| 扶风县| 孙吴县| 美姑县| 南岸区| 泊头市| 勐海县| 辉南县|