末成年小嫩xb,嫰bbb槡bbbb槡bbbb,免费无人区码卡密,成全高清mv电影免费观看

機器學習::加速 MOFs設計與開發

隨著機器學習(ML)的發展,材料系統的設計和發展經歷了一個加速過程。然而,將ML應用于材料系統設計的主要挑戰之一,在于找到合適的設計表示。大多數材料設計應用程序是利用定量(或數值)設計變量來表示材料系統。在很多情況下,這些定量描述符(特征)需要專業知識或數據分析,才能找到最合適的描述符。
機器學習::加速 MOFs設計與開發
Fig. 1 The qualitative representation and construction of metal-organic framework materials.

另一方面,盡管大多數定性(或分類)變量(如化學元素、化學成分)比定量變量更容易獲得,但在自動材料設計中直接將定性變量作為設計變量的一部分是一個挑戰。

機器學習::加速 MOFs設計與開發
Fig. 2 The design space of fof topology used in the study.?

金屬有機框架(MOFs)就是這類材料系統的一個例子。MOFs是一類多孔結晶材料,廣泛用于氣體儲存、氣體分離和催化。由于其高度可調性,MOFs被視為解決不同應用問題的潛在方案,例如二氧化碳(CO2)的捕集和分離。然而,由于MOF構建塊及其組合方式的多樣性,候選材料數量級過高。

機器學習::加速 MOFs設計與開發
Fig. 3 The Latent Variable Gaussian Process-Multi Objective Batch Bayesian Optimization (LVGP-MOBBO) framework.

因此,實驗所需的時間和資源太高,人們已經開始使用機器學習來加速材料系統的設計和開發。但現有的方法通常依賴于大量的數據集和高維物理描述符來表示材料設計空間。這些機器學習模型既耗時,泛化性又不強,通常不能遷移到不同的設計目標上。

機器學習::加速 MOFs設計與開發

Fig. 4 The LVGP-BO results for the Reduced Design Space (RDS) exploration.

來自美國西北大學機械系的Yigitcan Comlek等,提出了一套潛在變量高斯過程多目標批量貝葉斯優化(LVGP-MOBBO)框架,以直接從構建材料的構建塊中快速設計優越的MOFs

機器學習::加速 MOFs設計與開發
Fig. 5 The latent variables obtained from the Reduced Design Space (RDS) study.?

他們使用了已有的定性MOFs建筑塊信息,構建了一個可解釋的LVGP模型,在MOBBO的輔助下,自適應地引導CO2捕獲和分離性能較好的MOFs

機器學習::加速 MOFs設計與開發
Fig. 6 Structure – property relationship of the Entire Design Space (EDS) and Reduced Design Space (RDS) datasets.

他們通過整合批量貝葉斯優化,無描述符的LVGP也可以有效地擴展到具有大量級別的應用。通過LVGP預測具有看不見構建塊的MOFs的特性是一個很有前途的研究領域。

機器學習::加速 MOFs設計與開發
Fig. 7 The distribution of the largest cavity diameters of 1001 MOFs in the Reduced Design Space (RDS) for different building blocks.

該框架的一個有趣的應用是將涉及到通過自主實驗研究進行材料設計和開發。由于在LVGP-MOBBO中沒有人為干預,而且實驗輸入可以是定性和定量的,在這里提出的方法可以幫助研究人員有效地指導實驗。

機器學習::加速 MOFs設計與開發
Fig. 8 Performance of the LVGP-MOBBO on the Entire Design Space (EDS).

Editorial Summary

Machine learning accelerates the design and development of MOFs

With recent advances in machine learning (ML), material system design and development has undergone rapid acceleration. However, one of the major challenges in applying ML to material system design lies in finding the appropriate design representations. Most material design applications take advantage of quantitative (or numerical) design variables to represent material systems. In most cases, these quantitative descriptors (features) require either expert knowledge or data analysis to find the most appropriate ones. On the other hand, although most qualitative (or categorical) variables (e.g., chemical elements, chemical compositions) are more accessible than quantitative variables, it is challenging to directly include qualitative variables as a part of the design variables in automated materials design. Metal-organic frameworks (MOFs) are an example of such materials systems.

機器學習::加速 MOFs設計與開發
Fig. 9 Latent variable plots after the LVGP-MOBBO campaign on the Entire Design Space (EDS).?

MOFs are a class of porous crystalline materials that have been used extensively for gas storage, gas separation, and catalysis. Because of their highly tunable nature, MOFs have been looked at as a potential solution for different applications such as CO2 capture and separation. However, the versatility and different possible combinations of the MOF building blocks lead to millions of candidates. Due to the high experimental cost, both in time and resources, machine learning has been used to accelerate material system design and development. However, the existing approaches usually rely on large data sets and high-dimensional physical descriptors to represent the material design space. These processes can be both time consuming and property specific, meaning that the ML models and descriptors are often not transferable to different design objectives.?

機器學習::加速 MOFs設計與開發

Fig. 10 Comparative study with Random Forest and LVGP-MOBBO.

Yigitcan Comlek et al. from the Department of Mechanical Engineering, Northwestern University, presented a Latent Variable Gaussian Process Multi-Objective Batch Bayesian Optimization (LVGP-MOBBO) framework to perform rapid design of superior MOFs directly from the building blocks that construct the material. They took advantage of the readily available qualitative building block information that is used to construct the MOFs and built an interpretable LVGP surrogate model that cooperates with MOBBO to adaptively lead towards promising MOF candidates for CO2 capture and separation. With the integration of batch BO, descriptor-free LVGP can be effectively extended to applications with substantial number of levels. To predict the properties of MOFs with unseen building blocks through LVGP is a promising area of research. The interesting application of this framework would involve performing materials design and development through autonomous experimentation studies. As there is no human intervention in LVGP-MOBBO, and the experimental inputs can be both qualitative and quantitative, the method presented in this work can help researchers guide their experiments efficiently.

原文Abstract及其翻譯

Rapid design of top-performing metal-organic frameworks with qualitative representations of building blocks (快速設計具有定性表示構建塊的性能最佳的金屬有機框架)

Yigitcan Comlek, Thang Duc Pham, Randall Q. Snurr & Wei Chen

Abstract

Data-driven materials design often encounters challenges where systems possess qualitative (categorical) information. Specifically, representing Metal-organic frameworks (MOFs) through different building blocks poses a challenge for designers to incorporate qualitative information into design optimization, and leads to a combinatorial challenge, with large number of MOFs that could be explored. In this work, we integrated Latent Variable Gaussian Process (LVGP) and Multi-Objective Batch-Bayesian Optimization (MOBBO) to identify top-performing MOFs adaptively, autonomously, and efficiently. We showcased that our method (i) requires no specific physical descriptors and only uses building blocks that construct the MOFs for global optimization through qualitative representations, (ii) is application and property independent, and (iii) provides an interpretable model of building blocks with physical justification. By searching only ~1% of the design space, LVGP-MOBBO identified all MOFs on the Pareto front and 97% of the 50 top-performing designs for the CO2?working capacity and CO2/N2?selectivity properties.

摘要?

定性(分類)信息的系統通常會給數據驅動材料設計帶來挑戰。特別地,通過不同的構建塊來表示金屬有機框架(MOFs)給設計者將定性信息納入設計優化帶來了挑戰,同時也帶來了一個組合型的挑戰,即設計者們能夠探索的MOFs太多。在本工作中,我們集成了隱變量高斯過程(LVGP)和多目標批量-貝葉斯優化(MOBBO),以自適應、自主和高效地識別性能最好的MOFs。我們展示了我們的方法(i)不需要特定的物理描述符,只使用構建塊來構建MOFs,通過定性表示進行全局優化,(ii)應用和屬性獨立,(iii)提供了一個具有物理證明的可解釋構建塊模型。通過僅搜索約1%的設計空間,LVGP-MOBBO識別了Pareto前沿的所有MOFs,在目前50CO2吸收效率與CO2/N2選擇性能最好的設計中搜索出了97%的樣本。

原創文章,作者:計算搬磚工程師,如若轉載,請注明來源華算科技,注明出處:http://www.zzhhcy.com/index.php/2024/01/23/881f047d8b/

(0)

相關推薦

主站蜘蛛池模板: 宜阳县| 台南市| 揭东县| 新安县| 泗阳县| 雅江县| 阳高县| 洞口县| 梓潼县| 丰原市| 凤阳县| 开平市| 洛隆县| 壶关县| 云霄县| 广丰县| 冕宁县| 蒲江县| 巫溪县| 大城县| 赣榆县| 长泰县| 额济纳旗| 沭阳县| 新民市| 瑞金市| 嘉祥县| 北碚区| 寻乌县| 闻喜县| 河西区| 股票| 新疆| 大同县| 白玉县| 东阳市| 华坪县| 蕉岭县| 新河县| 遂平县| 汝南县|