末成年小嫩xb,嫰bbb槡bbbb槡bbbb,免费无人区码卡密,成全高清mv电影免费观看

想做材料逆向設計?問問人工智能吧

高效的晶體結構預測(CSP)是材料科學中的一項重要挑戰,其涉及在復雜的構型空間中尋找亞穩態晶體多形體的結構性質關系。隨著AI和機器學習技術的應用,特別是強化學習(RL),在高維搜索空間中的優化過程得以提升效率和準確性,推動了材料設計和發現的新范式。這些方法不僅加速了全局最優解的發現,還有助于探索和利用局部最小值,為材料創新提供更廣闊的可能性。

想做材料逆向設計?問問人工智能吧

Fig. 1 Schematic illustration of the nature of the search space (discrete vs. continuous) in materials applications.

阿貢國家實驗室納米材料中心的Subramanian K. R. S. Sankaranarayanan教授及其團隊開發的CASTING,是一個針對高維搜索空間內約束滿足問題(CSP)的工作流程,它采用了基于連續動作空間樹的強化學習(RL)搜索算法。

想做材料逆向設計?問問人工智能吧
Fig. 2 MCTS working as crystal structure optimizer.

該研究團隊對蒙特卡洛樹搜索(MCTS)算法進行了關鍵的算法改進,使其能夠成功地應用于與結構和拓撲預測相關的連續搜索空間逆問題。

想做材料逆向設計?問問人工智能吧
Fig. 3 Schematic depicting the workflow of the CASTING framework for performing inverse design.

通過對CASTING框架的效能進行展示,此項工作將該技術應用于各種代表性系統,包括單一成分的金屬系統如銀(Ag)和金(Au)、共價系統如碳(C)、二元系統如氮化硼(h-BN)和碳氫化合物(C-H),以及多組分鈣鈦礦系統如摻雜的鎳鈮氧化物(NNO)。

想做材料逆向設計?問問人工智能吧
Fig. 4 Exploring the performance and scalability of CASTING framework using an example metal polymorph.

此外,研究還采用了多目標優化策略,對超硬碳相進行逆向設計。研究顯示,CASTING在處理復雜材料科學問題上顯示出良好的擴展性、采樣準確度以及快速的收斂能力。

想做材料逆向設計?問問人工智能吧

Fig. 5 Effect of tree hyperparameter on the sampling, convergence, and solution quality of Ag polymorphs.

同時,還對不同的強化學習超參數如何影響搜索性能進行了深入探討。CASTING也被用于在不同維度系統中采樣穩定和亞穩態的多態性,涵蓋從三維(塊體)到低維系統如零維(團簇)和二維(片層)。

想做材料逆向設計?問問人工智能吧
Fig. 6 Comparison of structure prediction for carbon polymorphs with an empirical potential model.

與其他元啟發式搜索算法進行比較時,如遺傳算法、盆地跳躍和隨機抽樣,MCTS在解決方案的質量和收斂速度方面顯示出了明顯的優勢。這項技術被認為特別適合于解決那些具有多重目標、多種組分和多維度的復雜搜索問題。

想做材料逆向設計?問問人工智能吧

Fig. 7 Structural diversity of sampled Carbon(C) polymorphs using CASTING.

整體上,該研究成功地證明了強化學習技術如MCTS在結構和拓撲預測的逆向材料設計和發現問題中的應用潛力。該文近期發表于npj Computational Materials 9: 177 (2023).

想做材料逆向設計?問問人工智能吧
Fig. 8 Convergence with size-dependent diversity in nanoclusters of Gold (Au).

Editorial Summary

To reverse design of materials??Please ask the AI
Efficient crystal structure prediction (CSP) is a key challenge in materials science, which involves finding structure-property relationships for substable crystalline polymorphs in a complex configuration space. With the application of AI and machine learning techniques, especially reinforcement learning (RL), the optimization process in high-dimensional search spaces has been able to improve efficiency and accuracy, driving a new paradigm in materials design and discovery. These methods not only accelerate the discovery of globally optimal solutions, but also help to explore and utilize local minima, providing broader possibilities for materials innovation.?
想做材料逆向設計?問問人工智能吧
Fig. 9 Exploring 2D polymorphs with CASTING.
A team lead by Prof. Subramanian K. R. S. Sankaranarayanan from Center for Nanoscale Materials, Argonne National Laboratory, introduced CASTING which is a workflow that implements a continuous action space tree-based RL search algorithm for CSP in a high-dimensional search space.?
想做材料逆向設計?問問人工智能吧
Fig. 10 Comparison of the performance of CASTING with commonly used optimizers in crystal structure prediction.?
The authors?discuss the important algorithmic modifications that are needed in the MCTS to successfully apply it to continuous search space inverse problems associated with structure and topology predictions. To showcase the efficacy of the CASTING framework,?the authors?apply CASTING to a wide range of representative systemssingle-component metallic systems such as Ag and Au, covalent systems such as C, binary systems such as h-BN and C-H, and multicomponent perovskite systems such as doped NNO.?
想做材料逆向設計?問問人工智能吧
Fig. 11 Exploration of the configurational space of hydrogen doped Neodymium Nickel Oxide (NNO) with CASTING framework.
Additionally, the authors perform the inverse design of super-hard carbon phases using multi-objective optimization. The authors demonstrate the scalability, accuracy of sampling, and speed of convergence of CASTING on complex material science problems. The authors discuss the impact of the various RL hyperparameters on search performance. CASTING is also deployed to sample stable and metastable polymorphs across systems with dimensionality ranging from 3D (bulk) to low dimensional systems such as 0D (clusters) and 2D (sheets). Comparisons to other metaheuristic search algorithms such as genetic algorithms, basin hopping, and random sampling are also shownthe MCTS is demonstrated to have a superior performance in terms of the solution quality and the speed of convergence.?
想做材料逆向設計?問問人工智能吧
Fig. 12 Inverse design of super hard phases of Carbon (C).
The authors expect MCTS to perform well, especially for complex search landscape with multiple objectives, multiple species, and multi-dimensional systems. Overall, the authors successfully demonstrate the development and application of an RL techniques such as MCTS for inverse materials design and discovery problems related to structure and topology predictions.?This article was recently published in npj Computational Materials 9: 177 (2023).

原文Abstract及其翻譯

A Continuous Action Space Tree search for INverse desiGn (CASTING) framework for materials discovery(連續動作空間樹搜索用于材料發現的逆向設計(CASTING)框架)

Suvo Banik,?Troy Loefller,?Sukriti Manna,?Henry Chan,?Srilok Srinivasan,?Pierre Darancet,?Alexander Hexemer?&?Subramanian K. R. S. Sankaranarayanan?

Abstract?

Material properties share an intrinsic relationship with their structural attributes, making inverse design approaches crucial for discovering new materials with desired functionalities. Reinforcement Learning (RL) approaches are?emerging as powerful inverse design tools, often functioning in discrete action spaces. This constrains their application in materials design problems, which involve continuous search spaces. Here, we introduce an RL-based framework CASTING (Continuous Action Space Tree Search for inverse design), that employs a decision tree-based Monte Carlo Tree Search (MCTS) algorithm with continuous space adaptation through modified policies and sampling. Using representative examples like Silver (Ag) for metals, Carbon (C) for covalent systems, and multicomponent systems such as graphane, boron nitride, and complex correlated oxides, we showcase its accuracy, convergence speed, and scalability in materials discovery and design. Furthermore, with the inverse design of super-hard Carbon phases, we demonstrate CASTING’s utility in discovering metastable phases tailored to user-defined target properties and preferences.

摘要

材料的性能與其結構特征息息相關,這種關聯性促使逆向設計成為尋找具備特定功能新材料的關鍵手段。最近,強化學習(RL)方法作為逆向設計的強有力工具慢慢嶄露頭角,通常這些方法在離散的動作空間內發揮作用。然而,這種做法限制了它們在材料設計中的應用,因為這通常涉及到連續的搜索空間。在此,我們介紹一個基于RL的新框架——CASTING(連續動作空間樹搜索逆向設計),它采用了一種基于決策樹的蒙特卡洛樹搜索(MCTS)算法,并且經過策略調整和采樣改良,使其適應連續空間。我們通過一系列代表性案例,如金屬中的銀(Ag)、共價體系中的碳(C)、以及復合材料系統,例如石墨烯、氮化硼和復雜的相關氧化物,來展現CASTING框架在材料發現和設計中的高準確度、快速收斂性和良好的擴展性。此外,通過針對超硬碳相材料的逆向設計實例,我們證明了CASTING在探索符合用戶指定目標性能和偏好的亞穩態材料方面的實用價值和有效性。

原創文章,作者:計算搬磚工程師,如若轉載,請注明來源華算科技,注明出處:http://www.zzhhcy.com/index.php/2024/01/25/48c1cb44fb/

(0)

相關推薦

主站蜘蛛池模板: 皮山县| 赫章县| 洪泽县| 防城港市| 荔波县| 芜湖市| 黔江区| 临高县| 沁水县| 兴文县| 常宁市| 黄梅县| 丹棱县| 凭祥市| 信宜市| 夏邑县| 广州市| 汝阳县| 义马市| 台州市| 奈曼旗| 香港| 宜兴市| 芜湖县| 甘肃省| 宣汉县| 崇左市| 大同市| 隆子县| 和平县| 文安县| 正镶白旗| 特克斯县| 柞水县| 宝山区| 冀州市| 永新县| 沈阳市| 龙陵县| 永清县| 奉新县|