末成年小嫩xb,嫰bbb槡bbbb槡bbbb,免费无人区码卡密,成全高清mv电影免费观看

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)

材料科學(xué)領(lǐng)域中的一個(gè)核心挑戰(zhàn)是使用經(jīng)驗(yàn)和理論來(lái)探索具有特定性質(zhì)材料的組成和結(jié)構(gòu),并通過(guò)實(shí)驗(yàn)進(jìn)行驗(yàn)證。傳統(tǒng)上,材料可由其元素組成和結(jié)構(gòu)進(jìn)行表征。研究人員主要依靠知識(shí)和經(jīng)驗(yàn)來(lái)預(yù)測(cè)具有特定組成和結(jié)構(gòu)材料的某些性質(zhì)。
理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)
Fig. 1 Illustrations of representations for local structure and material structure.

傳統(tǒng)的材料計(jì)算盡管能夠提供關(guān)于假設(shè)材料物理性質(zhì)的準(zhǔn)確信息,但仍具有一定的局限性。與傳統(tǒng)方法不同,材料信息學(xué)(MI)方法首先將原始數(shù)據(jù)描述轉(zhuǎn)換為可用于數(shù)學(xué)推理和推斷的適當(dāng)表示。

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)

Fig. 2 Overview of proposed SCANN architecture.

近年來(lái),許多基于深度學(xué)習(xí)(DL)的MI方法被開(kāi)發(fā)出來(lái),以應(yīng)對(duì)材料表示方面的挑戰(zhàn)并預(yù)測(cè)其物理特性。然而,目前在材料研究中使用的DL模型在提供用來(lái)解釋預(yù)測(cè)和理解材料構(gòu)效關(guān)系的有效信息方面表現(xiàn)不足。

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)

Fig. 3 Visualizations of structure–property relationships for molecules in QM9 dataset.

來(lái)自日本科學(xué)與技術(shù)高級(jí)研究所的Tien-Sinh Vu提出了一種可詮釋DL架構(gòu),該架構(gòu)結(jié)合了注意力機(jī)制來(lái)預(yù)測(cè)材料特性并深入理解其構(gòu)效關(guān)系。

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)

Fig. 4 Correspondence between obtained GA scores of carbon, nitrogen, and oxygen atomic sites and molecular orbitals of molecular?structures in QM9 dataset.

作者使用兩個(gè)著名的數(shù)據(jù)集(QM9Materials Project數(shù)據(jù)集),以及三個(gè)內(nèi)部開(kāi)發(fā)的計(jì)算材料數(shù)據(jù)集,對(duì)所提出的架構(gòu)進(jìn)行了評(píng)估。訓(xùn)練測(cè)試分割驗(yàn)證證實(shí)了使用DL架構(gòu)導(dǎo)出的模型具有強(qiáng)大的預(yù)測(cè)能力,可與當(dāng)前最先進(jìn)的模型相媲美。

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)

Fig. 5 Visualizations of structure–property relationships for fullerene molecules.

此外,基于第一性原理計(jì)算的比較驗(yàn)證表明,在解釋與物理性質(zhì)有關(guān)的構(gòu)效關(guān)系時(shí),原子的局部結(jié)構(gòu)對(duì)材料結(jié)構(gòu)表示的注意程度至關(guān)重要。這些性質(zhì)包括分子軌道能量和晶體形成能。

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)

Fig. 6 Visualization of relationship between the adsorption energy and the deformation of a graphene flake with a platinum atom adsorbed on a graphene flake.

通過(guò)預(yù)測(cè)材料性質(zhì)并明確識(shí)別相應(yīng)結(jié)構(gòu)中的關(guān)鍵特征,本工作所提出的架構(gòu)在加速材料設(shè)計(jì)方面顯示出了巨大的潛力。該文近期發(fā)布于npj Computational Materials 9: 215 (2023).

理解材料的構(gòu)效關(guān)系:可詮釋深度學(xué)習(xí)
Fig. 7 Visualization of relationship between structure and formation energy obtained from SCANN model for crystalline magnetic materials in SmFe12-CD.

Editorial Summary

Understanding structure–property relations: Interpretable deep learning

A central challenge in the field of materials science involves the use of both experience and theory to explore the compositions and structures of materials with specific properties and subsequently validating them through experimentation. Traditionally, materials have been characterized based on their elemental compositions and structures. Researchers have primarily relied on their knowledge and experience to predict certain properties of hypothetical materials with specific compositions and structures. Traditional material calculations can provide accurate information on the physical properties of hypothetical materials, but they still have certain limitations. Unlike traditional approaches, materials informatics (MI) approaches initially involve the conversion of primitive data descriptions into appropriate representations that can be used for mathematical reasoning and inference. Recently, various deep learning (DL)-based MI approaches have been developed to address the challenges associated with material representation and to predict physical properties.

However, DL models currently employed in materials research exhibit certain limitations in delivering meaningful information for interpreting predictions and comprehending the relationships between structure and material properties.?

Tien-Sinh Vu et al. from Japan Advanced Institute of Science and Technology, proposed an interpretable DL architecture that incorporates the attention mechanism to predict material properties and gained insights into their structure–property relationships. The proposed architecture was evaluated using two well-known datasets (the QM9 and the Materials Project datasets), and three in-house-developed computational materials datasets. Train–test–split validations confirmed that the models derived using the proposed DL architecture exhibit strong predictive capabilities, which are comparable to those of current state-of-the-art models. Furthermore, comparative validations, based on first-principles calculations, indicated that the degree of attention of the atoms’ local structures to the representation of the material structure is critical when interpreting structure–property relationships with respect to physical properties. These properties encompass molecular orbital energies and the formation energies of crystals. The proposed architecture shows great potential in accelerating material design by predicting material properties and explicitly identifying crucial features within the corresponding structures.?This article was recently published in npj Computational Materials 9: 215 (2023).

原文Abstract及其翻譯

Towards understanding structure–property relations in materials with interpretable deep learning?(利用可詮釋深度學(xué)習(xí)理解材料的構(gòu)效關(guān)系)
Tien-Sinh Vu,?Minh-Quyet Ha,?Duong-Nguyen Nguyen,?Viet-Cuong Nguyen,?Yukihiro Abe,?Truyen Tran,?Huan Tran,?Hiori Kino,?Takashi Miyake,?Koji Tsuda?&?Hieu-Chi Dam

Abstract

Deep learning (DL) models currently employed in materials research exhibit certain limitations in delivering meaningful information for interpreting predictions and comprehending the relationships between structure and material properties. To address these limitations, we propose an interpretable DL architecture that incorporates the attention mechanism to predict material properties and gain insights into their structure–property relationships.

The proposed architecture is evaluated using two well-known datasets (the QM9 and the Materials Project datasets), and three in-house-developed computational materials datasets. Train–test–split validations confirm that the models derived using the proposed DL architecture exhibit strong predictive capabilities, which are comparable to those of current state-of-the-art models. Furthermore, comparative validations, based on first-principles calculations, indicate that the degree of attention of the atoms’ local structures to the representation of the material structure is critical when interpreting structure–property relationships with respect to physical properties. These properties encompass molecular orbital energies and the formation energies of crystals. The proposed architecture shows great potential in accelerating material design by predicting material properties and explicitly identifying crucial features within the corresponding structures.

摘要

目前,在材料研究中使用的深度學(xué)習(xí)(DL)模型在提供用來(lái)解釋預(yù)測(cè)和理解材料構(gòu)效關(guān)系的有效信息方面表現(xiàn)出一定的局限性。為了解決這些局限,我們提出了一種可詮釋的DL架構(gòu),該架構(gòu)結(jié)合了注意力機(jī)制來(lái)預(yù)測(cè)材料特性并深入理解其構(gòu)效關(guān)系。我們使用兩個(gè)著名的數(shù)據(jù)集(QM9Materials Project數(shù)據(jù)集),以及三個(gè)內(nèi)部開(kāi)發(fā)的計(jì)算材料數(shù)據(jù)集,對(duì)所提出的架構(gòu)進(jìn)行了評(píng)估。訓(xùn)練測(cè)試分割驗(yàn)證證實(shí)了使用DL架構(gòu)導(dǎo)出的模型具有強(qiáng)大的預(yù)測(cè)能力,可與當(dāng)前最先進(jìn)的模型相媲美。此外,基于第一性原理計(jì)算的比較驗(yàn)證表明,在解釋與物理性質(zhì)有關(guān)的構(gòu)效關(guān)系時(shí),原子的局部結(jié)構(gòu)對(duì)材料結(jié)構(gòu)演示的注意程度至關(guān)重要。這些性質(zhì)包括分子軌道能量和晶體形成能。通過(guò)預(yù)測(cè)材料性質(zhì)并明確識(shí)別相應(yīng)結(jié)構(gòu)中的關(guān)鍵特征,本工作所提出的架構(gòu)在加速材料設(shè)計(jì)方面顯示出了巨大的潛力。

原創(chuàng)文章,作者:計(jì)算搬磚工程師,如若轉(zhuǎn)載,請(qǐng)注明來(lái)源華算科技,注明出處:http://www.zzhhcy.com/index.php/2024/02/21/2f067080f4/

(0)

相關(guān)推薦

主站蜘蛛池模板: 天门市| 嫩江县| 福泉市| 合水县| 萍乡市| 乃东县| 新晃| 青龙| 扶风县| 宝兴县| 淳安县| 杭锦后旗| 横峰县| 伊金霍洛旗| 南充市| 古蔺县| 布尔津县| 崇州市| 渭源县| 泸西县| 来安县| 个旧市| 共和县| 鹰潭市| 柳江县| 大城县| 罗田县| 永福县| 自贡市| 余干县| 婺源县| 涞源县| 金川县| 封丘县| 疏勒县| 黔江区| 富顺县| 甘孜| 安泽县| 荆州市| 江都市|