末成年小嫩xb,嫰bbb槡bbbb槡bbbb,免费无人区码卡密,成全高清mv电影免费观看

增材制造中的相場模擬:圖網絡

轉載自公眾平臺:npj計算材料學

本文以傳播知識為目的,如有侵請后臺聯系我們,我們將在第一時間刪除。

在金屬增材制造過程中,理解和預測材料微觀結構演化非常重要。相場(PF)由于對相關物理進行了詳細建模,且和熱力學基礎一致,被認為是一種相對準確的數值模擬方法。

增材制造中的相場模擬:圖網絡
Fig. 1 An overview of the PEGN approach using single-layer single-track PBF as an example.

然而,高保真PF方法常常受到計算量的困擾,因為它通常需要求解一組連續場變量的耦合偏微分方程系統,且空間離散化必須足夠好,以分辨晶界等微觀結構特征。目前針對金屬增材制造過程中微觀結構演化的PF模擬,仍存在計算成本高、可擴展性差等缺點。因此,開發一種高計算速度、大空間尺度、精度高的金屬增材制造的相場模擬框架非常重要。

增材制造中的相場模擬:圖網絡
Fig. 2 Comparison of temperature profiles between DNS and PEGN.

來自美國西北大學機械工程系的曹堅教授團隊,提出了一種物理嵌入式圖網絡(PEGN),利用一種簡潔圖形來表示晶粒結構,并將經典的PF理論嵌入到圖網絡中。

增材制造中的相場模擬:圖網絡

Fig. 3 Comparison between DNS and PEGN. A sequence of melt pool development is illustrated for different time steps.

通過將經典的PF問題重新定義為圖網絡上的無監督機器學習任務,PEGN有效地解決了溫度場、液/固相分數和晶粒方向變量,以最小化基于物理的損失/能量函數。

增材制造中的相場模擬:圖網絡

Fig. 4 Quantitative comparison of melt pool shape evolution between DNS and PEGN.

作者使用316L不銹鋼的粉末床融合體作為試驗臺來證明所提出的PEGN的有效性,并通過通過多層和多軌道的例子證明了PEGN的可擴展性。

增材制造中的相場模擬:圖網絡
Fig. 5 Comparison of grain evolution between DNS and PEGN at various time steps.

此外,作者利用有限差分方法對PEGN和經典的直接數值模擬方法在溫度場、熔體池開發和晶粒演化等關鍵方面進行了比較。他們發現,該方法可以在顯著提高精度的同時提高PF方法的速度。

增材制造中的相場模擬:圖網絡

Fig. 6 Quantitative comparison of grain size and morphology between DNS and PEGN.

本研究對提供了一種金屬增材過程微觀結構演化的相場模擬框架,對材料制造具有重要意義。相關論文發表于npj Computational Materials 8: 201 (2022).

增材制造中的相場模擬:圖網絡
Fig.?7 Comparison of individual grain growth kinetics between DNS and PEGN.

Editorial Summary

Phase field simulation for additive manufacturing:?Graph network

During metal additive manufacturing (AM) processes, it is of critical importance to understand and predict microstructure evolution. The phase-field (PF) method is regarded as a relatively accurate method due to its detailed modeling of relevant physics and thermodynamically consistent foundations. However, the high-fidelity PF method is plagued by being extremely expensive in computation because it usually requires solving a system of coupled partial differential equations for a set of continuous field variables and the spatial discretization must be fine enough to resolve microstructure features like grain boundaries. Existing PF simulations for microstructure evolution during metal AM processes still have disadvantages of high computing cost and poor scalability. Therefore, it is of great importance to develop a PF simulation framework for metal AM processes, which possesses advantages of high computing speed, large simulation scale and high accuracy.?

增材制造中的相場模擬:圖網絡
Fig. 8 A multi-layer multi-track example that builds within a 2 × 2 × 1mm3 domain.

A?team led by Prof. Jian Cao from the Department of Mechanical Engineering, Northwestern Universit, proposed a physics-embedded graph network (PEGN) to leverage an elegant graph representation of the grain structure and embed the classic PF theory into the graph network. By reformulating the classic PF problem as an unsupervised machine learning task on a graph network, PEGN efficiently solves temperature field, liquid/solid phase fraction, and grain orientation variables to minimize a physics-based loss/energy function. The authors used powder bed fusion of 316L stainless steel as a testing bed for demonstrating the effectiveness of the proposed PEGN, and demonstrated the scalability with multi-layer and multi-track examples. Furthermore, by comparing PEGN with the classic DNS approach with the finite difference method in several key aspects such as temperature field, melt pool development and grain evolution, the authors showed that the proposed approach can speed up the PF method by orders of magnitude while preserving significantly high accuracy. This study provides a phase field simulation framework for the microstructure evolution of metal AM processes, which is of great significance in the field of material manufacturing.?This article was published in?npj Computational Materials?8: 201 (2022).

增材制造中的相場模擬:圖網絡
Fig. 9 A multi-layer multi-track example that compares two laser scan strategies.

原文Abstract及其翻譯

Physics-embedded graph network for accelerating phase-field simulation of microstructure evolution in additive manufacturing (增材制造中加速相場模擬微觀結構演化的物理嵌入圖網絡)

Tianju Xue, Zhengtao Gan, Shuheng Liao & Jian Cao

Abstract?The phase-field (PF) method is a physics-based computational approach for simulating interfacial morphology. It has been used to model powder melting, rapid solidification, and grain structure evolution in metal additive manufacturing (AM). However, traditional direct numerical simulation (DNS) of the PF method is computationally expensive due to sufficiently small mesh size. Here, a physics-embedded graph network (PEGN) is proposed to leverage an elegant graph representation of the grain structure and embed the classic PF theory into the graph network. By reformulating the classic PF problem as an unsupervised machine learning task on a graph network, PEGN efficiently solves temperature field, liquid/solid phase fraction, and grain orientation variables to minimize a physics-based loss/energy function. The approach is at least 50 times faster than DNS in both CPU and GPU implementation while still capturing key physical features. Hence, PEGN allows to simulate large-scale multi-layer and multi-track AM build effectively.

摘要相場(PF)方法是一種基于物理的模擬界面形態的計算方法。它已被用于金屬增材制造(AM)中的粉末熔化、快速凝固和晶粒結構演化的模擬。然而,傳統的直接數值模擬方法(DNS)由于網格尺寸足夠小,計算成本很高。本文提出了一種物理嵌入式圖網絡(PEGN),它利用一種簡潔圖形來表示晶粒結構,并將經典的PF理論嵌入到圖網絡中。通過將經典的PF問題重新定義為圖網絡上的無監督機器學習任務,PEGN有效地解決了溫度場、液/固相分數和晶粒方向變量,以最小化基于物理的損失/能量函數。在CPUGPU實現中,該方法至少比DNS50倍,同時仍然能捕獲關鍵的物理特性。因此,PEGN可以有效地模擬大規模的多層、多軌AM構建。

原創文章,作者:計算搬磚工程師,如若轉載,請注明來源華算科技,注明出處:http://www.zzhhcy.com/index.php/2024/03/15/583064a437/

(0)

相關推薦

主站蜘蛛池模板: 绥中县| 如皋市| 莒南县| 台山市| 尼木县| 五指山市| 津南区| 隆德县| 迁西县| 西藏| 日照市| 大方县| 巫山县| 太白县| 西华县| 苏州市| 普安县| 昌黎县| 天峨县| 石家庄市| 绵阳市| 淅川县| 札达县| 潞西市| 大方县| 乡宁县| 靖边县| 安图县| 富锦市| 达拉特旗| 财经| 巴南区| 尼木县| 新丰县| 临沭县| 科尔| 宜川县| 名山县| 蕉岭县| 天长市| 英吉沙县|