近年來(lái),化學(xué)式為ABX3的有機(jī)金屬鹵化物鈣鈦礦,特別是鉛基化合物如甲基銨碘化鉛(MAPbI3),在光電領(lǐng)域引起了一場(chǎng)革命。他們具有適當(dāng)帶隙、高吸收系數(shù)、極長(zhǎng)載流子壽命和擴(kuò)散長(zhǎng)度等特點(diǎn)。目前,鐵電(FE)疇被認(rèn)為是解釋其優(yōu)異性質(zhì)的一個(gè)重要因素,但學(xué)術(shù)界對(duì)此仍缺乏明確的共識(shí)和解釋。

在無(wú)機(jī)鈣鈦礦家族中,大多數(shù)具有較小Goldschmidt公差因子的鈣鈦礦氧化物不是鐵電材料。MAPbI3雖然具有較小的公差因子,但與傳統(tǒng)無(wú)機(jī)鈣鈦礦不同的是,它在A位點(diǎn)存在極性分子,該極性分子與PbI6–八面體之間復(fù)雜的相互作用對(duì)鐵電性質(zhì)可能有很大影響。然而,目前還沒有關(guān)于描述分子取向、極性扭曲和反鐵畸變(AFD)旋轉(zhuǎn)運(yùn)動(dòng)的演化的全面報(bào)道。

Fig. 2 The role of PbI6-octahedra rotations on reorientation of MA+ molecules from cubic to tetragonal phase.
來(lái)自比利時(shí)列日大學(xué)的Philippe Ghosez等,利用第一性原理密度泛函理論計(jì)算,系統(tǒng)地研究了MAPbI3中從立方相到四方相再到正交相的鐵電性質(zhì)。他們發(fā)現(xiàn),MAPbI3本應(yīng)該在冷卻過(guò)程中出現(xiàn)有序–無(wú)序相變,并在居里溫度TFE時(shí),轉(zhuǎn)向鐵電T-[111]相。

然而,在T=162 K時(shí),PbI6八面體的旋轉(zhuǎn)使系統(tǒng)轉(zhuǎn)變?yōu)?/span>Pnma正交晶格相,這個(gè)相比T-[111]相能量更低。AFD同相和異相運(yùn)動(dòng)的結(jié)合進(jìn)一步扭曲了A位點(diǎn)空位,使MA+分子按照反極性模式沿<100>方向排列。

因此,盡管在鐵彈疇處MA+偶極矩的重排可能具有一些極性特性,但MAPbI3的基態(tài)并不是鐵電態(tài)。這些結(jié)論只針對(duì)于MAPbI3材料,不一定能成為類似雜化鈣鈦礦的一般性質(zhì)。

作者所提到的方法和策略是通用的,可能有助于解決相關(guān)雜化鈣鈦礦的潛在鐵電性質(zhì)。相關(guān)論文發(fā)布于npj Computational Materials 8: 165 (2022)。

Editorial Summary
The missed ferroelectricity in MAPbI3
Organic-inorganic halide perovskites with the chemical formula ABX3, especially lead-based compounds such as methylammonium lead iodide (MAPbI3), have recently revolutionized the field of optoelectronics due to their appropriate band gap, high absorption coefficient, and extremely long carrier lifetime and diffusion length. Currently, ferroelectric (FE) domains are believedto be an important factor in explaining the outstanding properties of MAPbI3, but there is still a lack of definitive consensus and explanation in the academic community. Among the inorganic perovskite family, most perovskite oxides with a small Goldschmidt tolerance factor. Although MAPbI3has a small tolerance factor, it is different from traditional inorganic perovskites in that it has polar molecules at the A-site, which may have a significant impact on its ferroelectric properties due to complex interactions with the PbI6 octahedra. However, no global picture describing the evolution of molecule orientations, polar distortion and antiferrodistortive (AFD) rotation motions in all three phases has been reported yet. In this work, Philippe Ghosez et al. from the University of Liège, Belgium, systematically investigated the FE properties in MAPbI3 from the cubic to the tetragonal and then orthorhombic phases by using first-principles density functional theory calculations. It was shown that MAPbI3 should a priori exhibit on cooling an order-disorder transition toward the FE T-[111] phase at a given Curie temperature TFE. However, at T = 162 K, appearance of additional PbI6 octahedra rotations brings the system into a Pnma orthorhombic phase. This phase is significantly lower in energy than the T-[111] phase, and the combination of in-phase and out-of-phase AFD motions further distorts the A-site cavities in such a way that the MA+ molecules are now forced to align along <100> directions according to a well-defined antipolar pattern. The ground state of MAPbI3 is therefore clearly not FE, although the rearrangement of MA+ dipoles at ferroelastic domain walls might possibly contribute to providing some polar character. This article was recently published in?npj?Computational Materials?8,:?165?(2022).
原文Abstract及其翻譯
Missed ferroelectricity in methylammonium lead iodide (甲基銨碘化鉛中丟失的鐵電性)
Wen-Yi Tong,?Jin-Zhu Zhao?& Philippe Ghosez?
Abstract Methylammonium lead iodide, as related organometal halide perovskites, emerged recently as a particularly attractive material for photovoltaic applications. The origin of its appealing properties is sometimes assigned to its potential ferroelectric character, which remains however a topic of intense debate. Here, we rationalize from first-principles calculations how the spatial arrangement of methylammonium polar molecules is progressively constrained by the subtle interplay between their tendency to bond with the inorganic framework and the appearance of iodine octahedra rotations inherent to the perovskite structure. The disordered tetragonal phase observed at room temperature is paraelectric. We show that it should a priori become ferroelectric but that iodine octahedra rotations drive the system toward an antipolar orthorhombic ground state, making it a missed ferroelectric.
摘要?甲基銨碘化鉛是一種有機(jī)金屬鹵化物鈣鈦礦材料,近年來(lái)作為光伏材料備受關(guān)注。其吸引人之處有時(shí)被認(rèn)為源于其潛在的鐵電特性,但這仍然處于激烈的爭(zhēng)議之中。在本文中,我們通過(guò)第一性原理計(jì)算,解釋了甲基銨極化分子的空間排列方式如何逐漸受到它們與無(wú)機(jī)框架結(jié)合的傾向性以及與鈣鈦礦結(jié)構(gòu)固有的碘八面體旋轉(zhuǎn)之間微妙的相互作用所限制的。在室溫下觀察到的無(wú)序四方相是順電的。我們發(fā)現(xiàn),它本應(yīng)成為鐵電體,但由于碘八面體的旋轉(zhuǎn),系統(tǒng)向反極性正交晶格基態(tài)演化,成為一個(gè)丟失的鐵電體。
原創(chuàng)文章,作者:計(jì)算搬磚工程師,如若轉(zhuǎn)載,請(qǐng)注明來(lái)源華算科技,注明出處:http://www.zzhhcy.com/index.php/2024/03/29/0d68e19ed2/